

MISCELLANEOUS PAPER GL-90-5

FOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT--KWAJALEIN ISLAND, MARSHALL ISLANDS

by

Donald E. Yule, Michael K. Sharp

Geotechnical Laboratory

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

Final Report

Approved For Public Release; Distribution Unlimited

Prepared for US Army Engineer Division, Pacific Ocean Fort Shafter, Hawaii 96858-5440

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188			
1a REPORT SECURITY CLASSIFICATION Unclassified			16 PESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY				3 DISTRIBUTION / AVAILABILITY OF REPORT				
2b. DECLASSIF	ICATION / DOW	NGRADING S	CHEDU	.E		for public re ion unlimited		,
4. PERFORMIN	G ORGANIZAT	ON REPORT	NUMBE	R(S)	5 MONITORING	ORGANIZATION RE	PORT NU	MBER(S)
Miscella	neous Pape	er GL-90-	5		_			
6a. NAME OF USAEWES	PERFORMING	ORGANIZATIO	ON	6b. OFFICE SYMBOL (if applicable)	7a NAME OF M	IONITORING ORGAN	NIZATION	
Geotechn	ical Labor			CEWES-GG-H				
	City, State, and				76. ADDRESS (C	ity, State, and ZIP C	ode)	
	ls Ferry F g, MS 391							
8a. NAME OF ORGANIZA	FUNDING/SPO	NSORING		8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	IT INSTRUMENT IDE	NTIFICAT	ION NUMBER
USAE Div	ision, Pac	ific Oce	an	CEOPD	IAO No. E8	7890083 POD N	IIL-R	
8c. ADDRESS (City, State, and	ZIP Code)			10 SOURCE OF	FUNDING NUMBERS		
Fort Shar HI 96858					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
	ude Security C		or Gr	ound Based Rada	r Project	- Kwajalein I	sland	
Marshall					,			
12. PERSONAL	author(s)	Sharn. M	ichae	1 K				
13a. TYPE OF			TIME CO		14. DATE OF REPO	ORT (Year, Month, I	Day) 15	. PAGE COUNT
Final rep	ort	FRO	M	то	April 1990			70
16. SUPPLEME Available	NTARY NOTAT	ional Te	chnic	al Information	Service, 528	35 Port Royal	Road	
	eld, VA 2						. Mode,	
17.	COSATI			18 SUBJECT TERMS (
FIELD	GROUP	SUB-GRO	UP	Borehole seis Dynamic loads	_	Geophy Soil π		investigation
				Foundation in		5021 1	Jugara	
19. ABSTRACT	(Continue on	reverse if ne	cessary	and identify by block n	umber)			
				tigation for th				
				resented. Seop				
				were performed				
				tion and plate oundation mater				
function	modulus, Poisson's ratio, shear modulus, and constrained modulus were determined as a function of depth for the foundation soils. These properties are necessary to design a							
				erience dynamic				
				red at this sit				
depth of 60 ft (el -52). The upper 14 ft of foundation fill of beach sand. The materials are medium dense to								
N1(60) va		is appr		te for the site				
	ON/AVAILAB		TRACT		21. ABSTRACT S	ECURITY CLASSIFICA	TION	
	SIFIED/UNLIMIT			PT. DTIC USERS	Unclass	ified		· · · · · · · · · · · · · · · · · · ·
22a. NAME O	FRESPONSIBLE	INDIVIDUAL			226 TELEFHONE	(include Area Code) 22c. O	FFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACT (Continued).

The shear modulus ranges from $7.7 \times (10^3)$ psi. Poisson's ratio varies from 0.40 for unsaturated to 0.49 for saturated soil.

A method was presented to estimate moduli under the expected load from present unloaded in situ moduli values using the K2 parameter. An estimate of the moduli for the expected foundation load was presented for the upper 30 ft of the foundation. A comparison of the plate bearing test and seismic derived Young's modulus shows good agreement, $123 \times (10^3)$ psi and $78 \times (10^3)$ psi, respectively.

Unclassified

Preface

This report documents the foundation investigation conducted by the US Army Engineer Waterways Experiment Station (WES) for the Ground Based Radar Project at Kwajalein Island, US Army Kwajalein Atoll, Marshall Islands. The work was performed during the period 25 October through 3 November 1989 for the Engineering Division of the US Army Engineer Division, Pacific Ocean (POD), under IAO No. E87890083 POD MIL-R dated 8 Sep 89.

Mr. George Masatsugu, Geotechnical Section, Engineering Division (ED-G), POD, was Project Monitor for this work. Also, Mr. Olson Okada, ED-G, was the onsite monitor during the field work. Mr. Brad Scully was the POD Engineering Division Coordinator, Military Project Management Section (ED-NP). Their assistance was instrumental in the successful completion of this work.

Mr. Donald E. Yule of the Earthquake Engineering and Seismology Branch (EESB), Earthquake Engineering and Geosiences Division (EEGD), Geotechnical Laboratory (GL), WES, was the Project Engineer for this study. Mr Michael K. Sharp, Engineering Geophysics Branch (EGB), EEGD, GL, was the coinvestigator and coauthor of this report. The field work was performed by Messrs. D. E. Yule and M. K. Sharp. The work was conducted under the direct supervision of Mr. J. R. Curro, Chief, EGB, Dr. Mary Ellen Hynes, Chief, EESB, and Dr. A. G. Franklin, Chief, EEGD. The project was under the overall supervision of Dr. W. F. Marcuson III, Chief, GL.

COL Larry B. Fulton, EN, was Commander and Director of WES during the investigation. Dr. Robert W. Whalin was Technical Director.

Contents

Preface	Page 1
List of Figures	4
List of Tables	5
Conversion Factors, Non-SI to SI Units of Measurement	6
Introduction	7
Background Purpose	7 7
Site Description	8
General Foundation Idealization	8 10 10
Test Program	11
Geophysical Test Procedures	13
Crosshole Downhole Surface Seismic Refraction	13 14 16
Geotechnical Test Results	16
Soil Classification and Density	16 18 23
Geophysical Test Results	24
Surface Seismic Refracton	24 26 26 29

Interpretation	29
Determination of Soil Material Parameters	34
Determination of Shear modulus Determination of Poisson's ratio Determination of Young's Modulus	34 35 35
Procedure For Estimating Soil Moduli at Different Confining Stresses	38
General Determination of K2 Values Soil Moduli Determinations	38 38 41
Conclusions	43
Bibliography	47
Appendix A: Boring Logs	49
Appendix B: Plate Bearing Test	58

List of Figures

			Page
Figure	1.	Site Location	9
Figure	2.	Test Layout	12
Figure	3.	Test Configurations	15
Figure	4.	Soil Profile	17
Figure	5.	Standard Penetration Test Results	19
Figure	6.	C _n Curves Used To Convert N to N1	21
Figure	7.	Relationship Between Relative Density and $(N1)_{60}$ of Sands	22
Figure	8.	Surface Seismic Refraction Test Results Lines R1 and R2	25
Figure	9.	Crosshole Shear Wave Test Results	27
Figure	10.	Downhole Shear Wave Test Results	28
Figure	11.	Crosshole Compression Wave Test Results	30
Figure	12.	Composite Downhole Compression Wave Test Results	31
Figure	13.	Composite Compression and Shear Wave Site Profile	33
Figure	14.	Soil Moduli and Parameters	36
Figure	15.	Comparison of Moduli Determinations from Seismic and Plate Bearing Test Methods	42
Figure	16.	Summary of Soil Moduli and Parameters	45

<u>List of Tables</u>

		<u>Page</u>
Table 1.	SPT Test Results	23
Table 2.	Interpreted Layers and S-wave Velocities	26
Table 3.	Interpreted Layers and P-wave Velocities	29
Table 4.	Estimating Relative Density of Sands	
	From K2 values	40

Conversion Factors, Non-SI to SI (Metric) Units of Measurement

Non-SI units of measurements used in this report can be converted to SI (metric) units as follows:

Multiply	By	To Obtain
feet	0.3048	metres
feet per second	0.3048	metres per second
inches	2.54	centimetres
pounds (force) per		
square inch	6.894757	kilopascals
pounds (force) per	47.88026	pascals
square foot		•
pounds (mass) per	16.01846	kilograms per cubic metre
cubic foot		.
slugs (mass)	14.5939	kilograms
tons (force) per	95.76052	kilopascals
square foot		•

FOUNDATION INVESTIGATION FOR GROUND BASED RADAR PROJECT KWAJALEIN ISLAND, MARSHALL ISLANDS

Introduction

- 1. <u>Background</u>. The foundation investigation was performed adjacent to the Defense Control Center (DCC) building which is an existing structure on which a tower will be constructed to support a radar antenna. The existing building foundation needed to be evaluated to ensure that it would provide a stable foundation during the dynamic loading of this new antenna support system. Testing within the building itself was not possible; therefore, tests were conducted near the building in an area that was included in the earth berm surcharged foundation of the existing DCC building. It is assumed that site conditions at the test locations and beneath the building are virtually the same because of the proximity and similar preloading conditions.
- 2. <u>Purpose.</u> The purpose of this investigation was to assess the foundation materials at the site to a depth of 60 ft¹ by employing in situ geophysical and geotechnical methods. Geophysical methods were used to determine compression (P)- and shear (S)- wave velocities so that a velocity zonation of the foundation materials could be determined. For this study, a
- 1. A table of factors for converting non-SI to SI (metric) units of measurement is presented on page 6.

suite of seismic methods consisting of surface refraction, downhole, and crosshole tests were conducted to determine the above values. The geotechnical methods employed Standard Penetration Testing (SPT), density determinations, gradation, classification, and indexing tests of selected soil samples. Also, a Plate Bearing Test was performed at one location at the site. The geotechnical tests were performed by POD personnel. The SPT's and laboratory sample testing provided N-values, material classification and density of the foundation materials. Knowing this information the elastic constants Young's modulus (E), Shear modulus (G), and Poisson's ratio (3) can be determined for the foundation materials which are needed in the design of the antenna support structure. The plate bearing test provided an alternate method for an in situ determination of E.

Site Description

- 3. <u>General</u>. The location of this study was the US Army Kwajalein Atoll (USAKA) which is located in the northern Marshall Islands in the west central Pacific Ocean. The site is located at the western end of Kwajalein Island adjacent to the western side of the DCC building, as shown in figure 1. The regional geology of the site is an island derived from the buildup of coral skeletons on the submerged rim of an extinct volcano. The topography is low and flat. The elevation (el²) of the site is approximately 8 ft above mean
- 2. All elevations are in feet and are referenced to mean sea level

Figure 1. Site Location

sea level. The materials composing the subsurface are unconsolidated calcareous materials on a reef surface. The subsurface materials within the landmass are composed of unconsolidated limestone derived sediments of cobbles to silt sizes with a general USCS classification of SP. Also, the depth of the reef rock increases rapidly in the direction of the lagoon (US Army Engineers, 1989). This general geologic description of the site agrees well with the information derived from the borings drilled to accommodate the subsurface geophysical tests.

- 4. Foundation. The foundation at the site is composed of naturally occurring materials below a depth of 14 ft (el -6). These materials are composed of sands with silt and gravel with the occurrence of gravel increasing with depth. The boring logs contained no indication of coral limestone rock within the upper 60 ft. This information was obtained from the boring logs from holes BH-1, BH-2, and BH-3 which are included in Appendix A. A fill of beach sand was hydraulically placed to a height of 8 ft above the original island surface. This fill was surcharged with 8 ft of additional fill which was removed prior to start of construction. The water table is found at an average depth of 8 ft (el 0) and fluctuates $^{+}2$ ft with the tide.
- 5. <u>Idealization</u>. For clarity and use in engineering analysis it is necessary to idealize the foundation materials into discrete layers which will then be identified by material type. Material properties are assigned to each layer based upon the test results. The geological setting and construction

history of the site suggest idealization into four layers. The top layer consisting of fill will be variable and contain a shallow near surface zone of fill that may be disturbed and contain various construction materials buried during the construction and cleanup of the site in conjunction with the construction of the DCC building. This zone would then change into undisturbed hydraulic fill placed above the water table. A change in character of the fill placed below the water table might be evidenced and would be caused by the different placement conditions. Layer two would be the naturally occurring near surface ocean deposited beach materials. The third and fourth layers would consist of the coarser and more dense unconsolidated materials.

Test Program

6. The locations of tests performed during this investigation are shown in figure 2. All phases of the geophysical test program, except the crosshole S-wave test, were conducted according to Engineering Manual 1110-1-1802 guidelines (Department of the Army, 1979). The surface portion of the test program consisted of three seismic refraction lines (R1,R2,R3) in the vicinity of the plate bearing test location. Crosshole and downhole testing were performed near the DCC building in three boreholes (BH-1,2,3) spaced 10 ft and 5 ft apart, respectively, which were drilled to a depth of 60 ft. In addition to the geophysical tests employed in the completed boreholes, SPT and sampling were performed during the drilling operation.

Figure 2. Test Layout

Geophysical Tests Procedures

7. <u>Crosshole</u>. In preparation for the crosshole testing, 8-in. diameter boreholes were drilled to the 60-ft depth. These holes were then cased with schedule 40 4-in. ID PVC pipe with the annular space between the borings and casings grouted with a material that approximates the consistency of soil when it sets. The vertical alignment of each borehole was checked to see if there was any appreciable drift since accurate reduction of the crosshole data requires that the straight-lined distance be known between source and receiver at each test elevation. The S-wave test procedure consisted of placing a downhole triaxial geophone array in the receiver hole(s) and a downhole electrically powered vibrator in the source hole. The vibrator is frequency and duration controlled and produces a repeatable and vertically polarized shear (SV) -wave which allows accurate arrival time determination. The source and receiver(s) were lowered to the same depth in a borehole set (one boring for the source and two borings for the receivers) and clamped to the casing walls using inflatable bladders or pneumatically powered rams. The vibrator frequency was varied between 50 and 500 Hz using a four cycle burst mode and monitored until an optimal frequency was found that propagated well at that depth. The source waveform and the received waveform were recorded using a digital seismograph. The data were stacked (enhanced) until a well defined waveform was produced. For the P-wave test, the seismic source was an exploding bridgewire (EBW) detonator which was sufficiently strong in energy that data stacking was not necessary. Several different test configurations

were employed in the test program that are tabulated in figure 3. Knowing the distance between the source and receiver and the P- and S- wave arrival times at each test depth, an analysis of these data sets was made with the aid of a computer program "CROSSHOLE" (Butler et al, 1978). This program calculates true P- and S-wave velocities and determines velocity zones and depths to interfaces.

8. Downhole. The downhole test is similar to the crosshole test except the source is kept at the surface while the receiver array is lowered in a boring at 5-ft intervals. The source for the S-wave test is a hammer striking a wooden plank on alternate ends, which produces two records. The seismic signals produced by this procedure are predominantly horizontally polarized S-waves, with polarity depending on the direction of the hammer strike. The signals detected by the horizontal geophones on these two records are overlain and examined for a polarity reversal which is considered the arrival of the S-wave. The P-wave source for this test was a downward hammer blow to a steel plate with the vertical geophone signal being used to determine the P-wave arrival. The data are reduced by plotting arrival times versus slant distance between source and receiver. The inverse slope of the line segments drawn through the data points gives the velocities and slope changes in the line segments indicate the approximate depths where the velocities change. The various test configurations used in this study are shown in figure 3.

TEST CONFIGURATIONS

BOREHOLE TESTS

TEST	CONFIGURATION	TEST INTERVAL		
	BH-1 BH-2 BH-3			
CROSSHOLE P-WAVE	⊝ 10.3′ ⊝ 5′ ⊕	5 FT		
CROSSHOLE S-WAVE	0 0 •	2.5 FT		
CROSSHOLE S-WAVE	o • o	5 FT		
DOWNHOLE P-WAVE	0 🛦 0	5 FT		
DOWNHOLE P-WAVE	$\circ_{\blacktriangle}\circ$	5 FT		
DOWNHOLE S-WAVE		5 FT		

SURFACE TESTING

geoph R1	none spacing, ft	5,10,10	,10,10,10,	10,10		0,10,		C 4
geoph	one spacing, ft	2,2,2,2	,2,2,5,5,5,5	5,5,5				
R2	\triangle	0 0	0 0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
			42 ft —					
geoph	one spacing, ft	2,2,2,2	,2,2,3,5,5,5	,5,5				
R3	A OO O	0 0	0 0	\bigcirc	\circ	\bigcirc	\bigcirc	\bigcirc
			40 ft —					

O Receiver

Downhole source

▲ Surface Source

Figure 3. Test Configurations

9. Surface seismic refraction. The procedure for the surface refraction tests was to place geophones along a straight line on the ground surface at selected intervals with an energy source initiated at a selected offset distance from each end of the geophone array. Two types of surface tests were performed which consisted of a P-wave and S-wave test. Lines R1 and R2 were P-wave tests and line R3 was a S-wave test. The energy sources for these tests were identical to the ones used for the downhole P- and S-wave tests. The test configuration for each line is shown in figure 3. The data reduction consisted of plotting first arrival time of the P- and S-wave signal detected at each geophone versus geophone distance from the source. From these time versus distance (TD) plots, velocities and depths to refracting interfaces were determined using the computer program "SEISMO" (Yule and Sharp, 1989).

Geotechnical Test Results

10. Soil classification and density. Analysis of the soil sampling data has produced a four layer profile interpretation which is illustrated in figure 4. The first layer of fill material is a medium dense to dense poorly sorted sand (SP) with zones of silty sand and some cobbles and gravel. This layer extends to a depth of 13 ft. The second layer begins with the original soil deposit. This layer is a medium dense silty, very fine grained sand (SM) which can be found between 14 and 19 ft in depth (el -6 to -11). The third

SOIL PROFILE

Figure 4. Soil Profile

layer is a medium dense well graded sand with some silt and gravel that ends at a depth of 29 ft (el -21). The fourth layer is a loose to medium dense to dense silty sand with an increasing gravel content below 50 ft (el -42).

- 11. Density determinations of samples above the water table in the fill layer show an average moist unit weight of 100 lb/ft^3 and a water content of 11 percent. The specific gravity of the solids was measured to be 2.8. These results were used to estimate a total unit weight of the soil below the water table of 120 lb/ft^3 . Detailed information of the testing program and individual sample test results can be found in the boring logs, Appendix A.
- 12. SPT. The SPT's performed in boreholes BH-1,2,and 3 are presented in figure 5 as two plots of N-values versus depth. The recorded SPT data can be found in the boring logs, Appendix A. The leftmost plot presents the raw or measured blowcounts. In the next plot, the $(N1)_{60}$ value corresponding to each measured N-value is shown. The $(N1)_{60}$ value is determined by adjusting the observed N-value to an equivalent N-value had the test been conducted at a vertical effective overburden stress of 1 ton/ft² at an energy level of 60 percent of the theoretical maximum applied energy of the drop weight. The SPT's from this project were performed using the rope and cat-head system which operates at the 60 percent energy level. Determining an equivalent $(N1)_{60}$ blowcount allows the results to be compared with other equivalent $(N1)_{60}$ values and, therefore, established correlations of relative density can

Figure 5. Standard Penetration Test Results

be used to estimate these parameters for the soil at the site. The $(N1)_{60}$ was obtained by multiplying the measured blow counts by the correction factor Cn, which was determined from the curves presented in figure 6. The vertical effective stress was calculated using a total unit weight of 100 lb/ft^3 for the soil above the water table and a saturated unit weight of 120 lb/ft^3 for soil below the water table. A depth to the water table of 8 ft was used in these calculations.

13. The SPT data show considerable scatter especially near the surface. The average measured and average equivalent $(N1)_{60}$ blowcounts are annotated in figure 5 and in table 1 for each soil layer. These representative values for each layer are plotted as vertical lines on the plots. Using the $(N1)_{60}$ values and the correlation curve for sands given in figure 7, estimates of the relative density of the sands at the site were determined and listed in table 1. A site global average $(N1)_{60}$ value of 22 is appropriate for the sands and correlates to sand with a relative density of 65 percent.

Figure 6. C_n Curves Used to Convert N to N_1

Figure 7. Relationship Between Relative Density and $\left(\mathrm{NI}\right)_{60}$ of Sands

Table 1. SPT Test Results

Layer	Aver	age	Relative Density,%		
	N(measured)	(N1) ₆₀	(based on figure 7) Tokimatsu & Seed 1987)	1	
			; ************************************		
1	20	25	67		
2	17	21	64		
3	21	21	64	į	
4	20	15	55		

14. Plate Bearing Test. A Plate Bearing Test was conducted at one location and consisted of static and cyclic tests on a 26.6- in. square steel plate. The testing elevation was 1 ft below the existing grade (el 7). The complete description of these tests and their results are presented in Appendix B. For the static plate bearing test, a maximum load of 34.9 lb/in. was applied. Based upon this test, a modulus of soil reaction of 340 lb/in. was determined. The cyclic plate bearing test was performed with a 19.3 lb/in. static load and a cyclic load of 5 lb/in. From this test an E of 123.6x(10³) lb/in. was determined. This computation is presented in Appendix B.

Geophysical Test Results

Surface Seismic Refraction

- 15. P-wave Tests R1 and R2. The results from P-wave surface refraction lines R1 and R2 are shown in figure 8. The R2 line was configured to investigate the near-surface materials; whereas, the longer R1 line was employed to investigate to deeper strata. The two overlapping data sets were combined to provide a detailed interpretation. From this composite TD plot a four layer seismic profile was indicated. A cross section is also shown in figure 8 with the depths to interfaces and velocities presented. The calculated depths at each end of the line indicate very little dipping of the layers in this a in Layers one and two with velocities of 1,440 ft/sec and 2,610 ft/sec, respectively, correspond to the fill materials above the water table. The third layer with a velocity of 5,110 ft/sec is the saturated fill material. This result shows the "seismic" water table to be at an average depth of 8.0 ft (el 0). The fourth layer detected at a depth of 17-19 ft (el -9 to -11) has a velocity of 6,400 ft/sec and corresponds to the saturated well sorted sands approximately 6 ft below the bottom of the fill.
- 16. <u>S-wave Test R3.</u> Results from the surface shear wave refraction line R3 are not presented because the P-wave arrivals were so strong that the S-wave arrivals could not be accurately identified and analyzed.

Surface Seismic Refraction Test Results Lines Rl and R2 Figure 8.

Crosshole and Downhole Surveys

17. <u>S-wave.</u> The results of the crosshole shear wave test are presented in figure 9. A plot of averaged velocities for all the tests versus depth shows a steady increase in velocity with depth except for an inversion zone between 8 and 21 ft (el 0 to el -13). This data set was divided into seven velocity zones which adequately defines this trend. The interpreted layers and velocities are presented in table 2. The downhole S-wave test results shown in figure 10, agree well with the crosshole tests. For the downhole test, the weakness of the shear waves propagating through the deeper material made the data difficult to analyze below a depth of 30 ft (el -22).

Table 2. Interpreted Layers and S-wave Velocities

Crosshole <u>Shear Wave</u>	Down ⊃le <u>Shear Wave</u>			
Interface Velocity	Interface Velocity			
Depth (el),ft fps	Depth (el),ft fps			
600	630			
8 (0)	6 (2)			
470	480			
13 (-5) 530	11 (-3)			
21 (-13)	19 (-11)			
38 (-30)	720			
48 (-40)				
56 (-48) 940				

Figure 9. Crosshole Shear Wave Test Results

Figure 10. Downhole Shear Wave Test Results

18. P-wave. The results from the crosshole P-wave test indicate a five layer system, with the interpreted velocities and interfaces shown in table 3 and figure 11. Again, the velocities show a general increasing trend with increasing depth. The results of the downhole P-wave test are presented in figure 12. The downhole test shows an increasing velocity with depth profile which is also presented in table 3. The crosshole, downhole, and surface seismic tests show good agreement in the interpreted velocities and interfaces of the soil layers.

Table 3. Crossi <u>P-W</u> a	nole	Downh	and P-wave Velocities Downhole <u>P-Wave</u>			
Interface	Velocity	Interface	Velocity			
Depth (el),	ft fps	Depth (el),ft	fps			
	1500		1265 .			
5 (3)		5 (3)				
	2150		3400			
9 (-1)		8 (0)				
	5200		5000			
15 (-7)		. 15 (-7)				
	6200		6280			
20 (-12) .						
	6600					
60 (-52) .						

Interpretation

19. To make a meaningful interpretation of the results from the different tests into a generalized profile for the site, the data were first compared among the different tests at the same locations and then the

Figure 11. Crosshole Compression Wave Test Results

Figure 12. Composite Downhole Compression Wave Test Results

data sets were compiled into a composite profile. From these comparisons the results were analyzed and the idealized P- and S- wave velocity profiles were developed. These profiles are presented in figure 13 along with the four layer profile developed from the soil samples. The first layer of fill has a P-wave velocity range of 1,500 to 5,200 ft/sec with the 5,200 ft/sec interface being the top of the water table at a depth of 8 ft (el 0). This layer had a S-wave velocity range of 470 to 600 ft/sec. The fill showed an inversion in the S-wave velocity starting at the top of the water table. This inversion zone continues downward and includes layer two which is the beginning of the original soil deposit. However, this layer shows an increase in S-wave velocity to 530 ft/sec. This inversion zone was given a S-wave velocity of 510 ft/sec, weighted average of the 470 ft/sec and 530 ft/sec layers, for use in later soil modulus calculations. Layer 2 did not show an inversion in P-wave velocity which was measured to be 6,200 ft/sec because of the material being saturated. The third layer had a P-wave velocity of 6,600 ft/sec and a S-wave velocity of 640 ft/sec. The fourth layer had a P-wave velocity of 6,600 ft/sec and a range of S-wave velocities from 640 to 940 ft/sec. In general, the raw seismic data showed a some scatter which was also evidenced in the measured SPT values. These similar results suggest that the scatter in the data is mainly related to the soil nonhomogenity and therefore the velocities and properties reported are averages for the soil at depths tested with higher and lower actual values existing depending on test location.

Figure 13. Composite Compression and Shear Wave Site Profile

Determination of Soil Material Parameters

20. <u>Determination of Shear Modulus</u>. Assuming an infinite, homogenous, isotropic, elastic medium, and solving the equations of wave motion for a shear wave, which is a wave confined to motion in a plane in the direction of propagation, results in Equation 1 (Richart et al, 1970).

$$V_S = \sqrt{G/\rho}$$
 (1)

where

Vs = S-wave velocity ft/sec

 $G = \text{shear modulus}, lbs/ft^2$

 ρ = mass density of Soil, slugs/ft

 δ_7 = total unit weight of soil, lbs/ft³

g = gravitational constant, ft/s²

This equation states that S-wave velocity is dependent on the ratio of the shear modulus to the mass density of the medium. For this particular site a total unit weight of 100 lb/ft^3 was used for unsaturated soil and 120 lbs/ft^3

for saturated soil. The unit weight was converted to mass density; and, with the appropriate shear wave velocities substituted into Equation 1, the shear moduli, G, were computed. The results are tabulated in figure 14.

21. <u>Determination of Poisson's ratio</u>. Again, assuming an elastic medium, if the compression- and shear- wave velocities are known, Poisson's ratio,), can be determined from the ratio of these velocities, Equation 2. This relation is given below in Equation 3 (Department of the Army, 1967). The ratios were calculated using equation 2 and then used in expression 3 with the results of these calculations presented in figure 14.

$$V_R = V_P/V_S$$
 (2)

$$\gamma = \frac{V_R^2 - 2}{2(V_R^2 - 1)} \tag{3}$$

Vp = P-wave velocity, ft/sec

Vs - S-wave velocity, ft/sec

v = Poisson's ratio

22. Determination of Young's and constrained moduli. Young's modulus, E, relates the stress to the resulting strain when a uniform stress is applied to plane sections of a body perpendicular to the applied force with the lateral surfaces free from constraint. The measurement of the velocity of this dilational (P-) wave through the body results in a "rod" velocity which with a value of the body's density, E can be determined directly (Kolsky, 1963).

SITE PARAMETERS

2 6	:	33	4 2	48 55	65
K2	 	36 32 31	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	54 66
Σ	4852 4852 9969 9979	9979 9979 9482 9482	1127327 1127327 1127327 1127327 1127327 1127327 1127327	2733 2733 2733 2733 2732	2732 2733
E 1b/in ²	2181 2181 2263 2263 2012	012 012 015 015	31701 31701 31701 31701 31701 31701	348 348 348 320	32 59
ც	7764 7764 7764 6731	73 73 73 73 73 73	060 060 060 060 060 060 060	8 22 22 23 23 22 23 23 23 23 23 23 23 23 23 23 23 2	782 214
POISSON ratio	0.40	04. 04. 04.	0.4995 0.4995 0.4995 0.4995 0.4995	4 4 4 4 4 9 0 0 0 0	.49
Vs	600 600 600 510		640 640 640 640 640 640 750	നവവവ	23
Vp ft/		7777	009999999999999999999999999999999999999	9 9 9 9	0099
	1001	7777	120 120 120 120 120	N N N N N	2 2
DEPTH ft	2.5 7.5 0.0	0.75	22.5 22.5 27.5 32.0 32.5 40.0	7070	5.

Figure 14. Soil Moduli and Parameters

However, with in situ seismic testing the measured P-wave is related to the constrained modulus, M, and the body's density as a result of the different boundary conditions that exist for this type testing. The constrained modulus is so named because the lateral sides are constrained which more closely match the conditions present in an in situ seismic velocity measurement. Knowing either Young's modulus or the constrained modulus the other can be derived using the body's Poisson's ratio. In this study, the shear modulus and Poisson's ratio were determined, and then the soil's Young's modulus, E, was calculated using Equation 4. The constrained modulus, M, was determined using Equation 5. These calculated modulus values are shown in figure 14.

$$E = 2(1+v)G \tag{4}$$

$$M = \frac{E(1+v)}{(1+v)(1-2v)}$$
 (5)

Procedure For Estimating Moduli at Different Confining Stresses

- 23. General. For engineering use it is necessary to determine soil moduli for the expected load magnitudes and loading conditions of the planned structure. These moduli can be arrived at using two approaches given that certain in situ properties are known. The first method involves selecting properties at a depth in which the overburden pressure is equal to the expected load of the structure (Department of Army, 1967). This method assumes that the soil is homogenous throughout the soil profile which encompasses the depth of the structure and the needed depth of soil to equal the structure's load. An alternative method allows an empirical constant, K2, to be determined for different layers in the profile and gives the advantage of using soil parameters that can vary in depth and therefore model the soil more precisely at the proper depth.
- 24. <u>Determination of K2 Values</u>. Investigators have shown that for sands shear modulus values are strongly influenced by the confining pressure, void ratio or relative density, and strain amplitude (Seed et al, 1970). For the case of low amplitude strains < 5x(10⁻⁴), which is the range of in situ seismic wave velocity measurements, a Gmax is determined, and the resulting coefficient in equation 6, K2, is a K2max, which is also applicable to elastic response loading conditions. It should be further noted that these field

velocities are determined from total stress conditions which means that the moduli are for undrained loading conditions. The expression that relates

Gmax to these factors is given in Equation 6.

G = 1000 K2
$$\sqrt{\sigma m'}$$
 (6)
where
$$\frac{\pi m' = \frac{1}{3} (\sigma_i' + \sigma_2' + \sigma_3')}{= \frac{1}{3} (\sigma_i' + 2 \kappa_0 \sigma_i')}$$
= 0.633 σ_i'

Gmax - low strain amplitude shear modulus

K2 = empirical proportionality constant relating Gmax to $\sqrt{\sigma_m}$

It can be seen that the relational factor K2 can be determined from data at hand as a function of depth for the soil profile. These resulting K2's can be averaged within each layer with the resulting average K2 assigned to that zone of material. This assigned K2 can then be used to estimate shear moduli at

selected confining stresses at any point in the profile by use of Equation 6.

Table 4 given below is derived from data given in Seed et al. (1970) and can
be used to estimate relative density for sands from K2 values.

Table 4.
Estimating Relative Density of Sands from K2 Values

Relat	ive Density %	к2
Loose	30	34
Medium	40 45 60	40 43 52
Dense	75	61
Very Dense	90	70

25. The calculated K2's for each depth increment in the soil profile are given in figure 14. A value of Ko=0.45 was assumed in determining the mean effective confining pressure.

26. Soil Moduli Determinations. The use of the K2 parameter to estimate soil moduli for various loading conditions can be illustrated using this procedure to compare the moduli derived from the seismic and plate bearing tests. The moduli for the expected load was calculated using the sum of the static plus one-half of the cyclic plate bearing loads $(3,140 \text{ lbs/ft}^2)$ as the vertical effective stress. The in situ moduli from the seismic results were obtained from the same test elevation as the plate bearing test. These same calculations were repeated to a depth of 30 ft (el -22). A table of moduli values for this applied load to a depth of 30 ft and a comparison of Young's modulus between the seismic and plate bearing tests are presented in figure 15. The results from the seismic tests estimate a lower E than the plate bearing test results. The seismic results are strongly dependent on the magnitude of the S-wave velocity. The reported S-wave velocity of 600 ft/sec is a conservative average; however, if a velocity of 720 ft/sec is used, the agreement is much closer. This velocity is a raw average of all S-wave data at a depth of 2.5 ft. This result is also presented in figure 15 for comparison.

SOIL MODULI ESTIMATIONS

DEPTH ft	LOAD lb/ft²	К2	Poisson's ratio	G*	E* lb/in²
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5	3140 3140 3140 3140 3140 3140 3140 3140	89 63 51 32 36 34 32 31 46 44	0.410 0.410 0.470 0.490 0.490 0.490 0.490 0.490 0.490 0.490	27561 19510 15793 9910 11148 10529 9910 9600 14245 13626	55017 46433 29531 33222 31376 29531 28608 42450 40605
30.0	3140	41	0.490	12697	

COMPARISON OF MODULI DETERMINATIONS

Source	Load K2 lb/ft ²	Poisson's ratio	G	E lb/in².	M
	Test Procedu				
	•	0.410	27561	77722	180678
	3140 128	0.350	39638	107023	171764
Plate Be	aring Test			123000	

Figure 15. Comparison of Moduli Determinations from Seismic and Plate Bearing Test Methods

Conclusions

- 27. From the data that have been presented the following general conclusions are made.
- a. The site can be divided into the following zones with material classifications and characteristic P- and S-wave velocities as follows:

Material	P-wave	S-wave
	(ft/sec)	(ft/sec)
Layer 1: sand fill	ì	1
SP	1500 ¹ - 5200 ²	470 - 600
Layer 2: sand, silty		
SM	5200 - 6200	530
Layer 3: sand, fine		I
SW	6600	640
Layer 4: sand, silty		
gravely		
SM	6600	640 - 940

¹unsaturated ²saturated

b. The SPT test results show that the measured N-values have considerable scatter especially in the upper 10 ft at the site. The scatter is probably due to the naturally occurring gravel and cobbles that were in layer one and buried construction materials in the near surface. The average

equivalent $(N1)_{60}$ blowcount for the fill is 25 with the original sands between 14 and 29 ft in depth (el -6 to -21) having a value of 21. The sands below a depth of 29 ft (el -21) show a decrease in the $(N1)_{60}$ blowcount to a value of 15. A global site value for the sands would be 22 which corresponds to a medium dense sand.

- c. The Shear and Young's moduli and Poisson's ratio have been determined for each test depth and tabulated in figure 14. These parameters have been grouped according to idealized layers and presented in figure 16. Throughout the entire profile the shear modulus ranges from $7.7 \times (10^3)$ lbs/in² at the surface to $22 \times (10^3)$ lbs/in² at a depth of 60 ft. Young's modulus varies from $22 \times (10^3)$ lbs/in² at the surface to $66 \times (10^3)$ lbs/in² at the bottom of the profile. The unsaturated materials near the surface have a Poisson's ratio of 0.40 with the saturated materials below the water table having an expected value of 0.49. There exists a zone between 10 and 20 ft in depth (el -2 to -12) where the moduli decrease due to the inversion in the S-wave velocity profile at these depths.
- d. A K2 parameter was calculated for each test depth and an average K2 assigned to zones in the profile and shown in figures 14 and 16. Layer one has a K2 of 68 in the upper 7 ft and 33 for the remainder. The second layer also has a K2 value of 33. The upper 2 feet of layer three has a K2 of 33 which increases to 42 below that depth. The fourth layer ranges from a K2 of 42 at a depth of 29 ft (el -21) to a K2 of 65 at a depth of 60 ft (el -52).

Dr 88 30 55 SOIL PARMAMETERS avq **K**2 42 68 33 48 34 46 32 40 39 38 50 49 46 43 41 22636 20129 20153 21813 31701 43482 lb/in? U 7764 6731 14557 10600 SITE PARAMETERS 0.405 0.458 0.495 0.405 0.495 0.497 0.493 SEISMIC VELOCITY S 510 009 640 750 ft/sec 2150 5200 0099 1500 6200 1b/ft 100 120 ď LAYER DEPTH ft 25.0 27.5 30.0 35.0 5.0 40.0 10.0 12.5 15.0 17.5 20.0 22.5 42.5 45.0 47.5 50.0

Dr

(N1)60

29

_

~

ന

64

21

21

55

15

65

55

53200

17829

0.492

830

52.5 55.0 80

65 į

> 65987 65987

> > 22144

22144

0.490

925 925

0099

120

0.09 57.5

!

Figure 16. Summary of Soil Moduli and Parameters

4

- e. The K2 parameter was used to estimate moduli for a load of 3,140 lbs/ft^2 and then compared with the plate bearing test results. The plate bearing test estimates an E of 123,000 lbs/in^2 which is higher than the E of 78,000 lbs/ft^2 derived from the K2 parameter.
- f. Comparing the relative densities of the sands at the site using correlations based on calculated K2 values and $(N1)_{60}$ blowcounts shows good agreement except that the K2 derived relative density estimates are lower for the sands between the 10 and 30 ft depth range (el -2 to 22). These relative density estimates are shown in figure 16.

Bibliography

Butler, D.K., Skolund, G.R., and Landers, G.B. 1978. "Crosshole: An Interpretive Computer Code for Crosshole Seismic Test Results, Documentation and Examples," Miscellaneous Paper S-78-8, US Army Engineer Waterways Experiment Station, Vicksburg, MS

Department of the Army. 1979. "Geophysical Exploration," EM 1110-1-1802, USACE, Washington, DC.

Department of the Army. 1967. "Engineering and Design, Foundations Subject to Vibratory Loads," EM 1110-345-310, USACE, Washington, DC.

Kolsky, H., 1963. "Stress Waves in Solids", Dover Publications Inc., New York, NY.

Marcuson, W.F., III, and Bieganousky, W. A. 1977. "SPT and Relative Density In Coarse Sands," <u>Journal of the Geotechnical Engineering Division</u>. American Society of Civil Engineers, Volume 103, No. GT11, pp 1295-1309.

Richart, F.E., Woods, R.D., and Hall, J.R. 1970. "Vibrations of Soils and Foundations", Prentice-Hall, Inc., Englewood Cliffs, NJ, pp 75-80.

Seed, H. B., and Idriss, I.M. 1970. "Soil Moduli and Damping Factors For Dynamic Response Analysis," Report No. EERC 70-10, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, CA.

Skempton, A. W. 1986. "Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Relative Density, Particle Size, Ageing, and Overconsolidation." Geotechnique, Vol 36, No. 3, pp 425-447.

Terzaghi, K. and Peck, R. B. 1948. <u>Soil Mechanics in Engineering Practice</u>, John Wiley and Sons, New York, NY.

Tokimatsu, K. and Seed, H. B. 1987. "Evaluation Of Settlements in Sands Due to Earthquake Shaking," <u>Journal of the Geotechnical Engineering Division</u>American Society of Civil Engineers, ASCE, Volume 113, No. 8, pp 861-878

US Army Engineers. 1989. "Design Criterion In The U.S. Army Kwajalein Atoll", Letter report , US Army Engineer Division, Pacific Ocean, Ft Shafter, HI.

Yule, D.E., and Sharp, M.K., 1989. "SEISMO: Interactive Computer Aided Seismic Refraction Data Analysis Program, User's Manual," Draft Report, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

APPENDIX A

BORING LOGS

B-1

B-2

B-3

Project Number: LéiéND Boring Number: DQC

i	: :	;			1		:	N :	F
PHI I C	ERAV :				4	PI	Yn ;	or :	•
rees: (TSF) :	; (2) ;	(3) ;	(\$) :	6 s :	(PCF); ;	(1)	(1) :	→ CR (;	e t Vigual Classification
RIAL : TRIAL.	SIEVE	SIEVE:	SIEVE	.0202	· MOTOR!	72A 10	HATURAL:	BLOWS:	1 1 = 4 4 (2) 1
TEST: TEST		• • • • • • • • • • • • • • • • • • • •		-	UNIT		: HOIST-	PERI	1 (# - 4(8P) 2 CORLY GRADED GRAVELS
ANGLE: CCHES-		1631							GRAVEL-SAND MISTURES,
					WEIGH			FOOT	GRAVEL-SAND RESTURES,
OF: ION	li i			TEST	i i		CONTENT:	ORI	THE OF THE S
IER-I	<u> </u>				<u>. </u>		<u>: </u>	CORE	
MLI		:	i		; ;		: i	RECOV-1	
ICT-I	•	:						ERY!	7
ICM:					:)CR(;	(GH) WELL-GRADED SRAVELS
i	:	; ;		;	:		1 1	;	SRAVEL-SAND HITTURES
:	<u>:</u>	<u> </u>			:		<u>:</u> :	نـــــــن	O CR NO FINES
:	;	; ;		ì	1		;	:	II FET TIGHT SILTY GRAVELS, GRAVE
:	:	; ;	i	t	:		:	. :	12 - July SILT MEXTURES
ŧ	:	: :	;	i	;	}	:	: 1	13 कि ने वि
i	:	;	:	:	:	i	:	:	14 GCT CLAYEY GRAVELS, GRAV
	<u>:</u>	<u> </u>		<u>:</u>	<u>:</u>	<u></u>	:		15 CLAY HEXTURES
1		NIFIE						-	16 200 004
:		RING !						; ;	17 (SP) POURLY-GRADED SANDS
;		OD PE					<u> </u>	*	18 (1999) GRAVELLY SANDS, LITT
:	; -	;	1	1	!	Ī	1		19 (1988) FINES
:	1		!	1	1	:	<u>:</u>	:	20 (SW) WELL-GRADED SANDS CR
- 1		:	:	:	1	:	1	:	21 SANDS, LITTLE OR HO
	1	1		1	:	;	:		22
•	į	;	•	!	•	:	:		23 THERE (SH) SILTY SANDS, SAND-SI
•	;	•		•	;	:	•	•	24 HISTURES
:	i	;	:	;	•	•	•	;	25
			`	; -	' ;	•		-	24 (SC) CLAYEY SAMOS, SAMO-C
;	,	1	•	•	;	;	;	•	27 MILTURES
:	;		:	:	;	•	1	•	79
•		:	:			•	,	•	
i	i	i	•	i	í	:		1	
		 -	:	: -		<u> </u>		<u> </u>	
i	i	ì	ì	:	•	i	i	i	31 SLIGHT PLASTICITY
	•	:		:	•	1	i		32 (CL) INGREANIC CLAYS OF L
i	i	1	i	ī	•	i	:	•	33 HEDIUM PLASTICITY
!	1	ł	:	ł	;	i	}	1	34
	_!	<u></u>	<u> </u>	<u> </u>		<u></u>		ــــــــــــــــــــــــــــــــــــــ	35 : (OL) CREAMIC SILIS AND OF
;	;	:	1	:	:	1	1	:	SILT-CLAYS OF LOW PI
i	1	:	;	:	1	:	;	:	7
:	:	:	:	:	1	:	:	:	(NH) INDREAMIC SILTS, EL
;	;	:	:	1	:	ŧ	:	:	: 39
	<u> </u>	<u>:</u>	1	1	1	!			; 40
:	;	:	;	1	1	;		1	1 41 CCHI INDRGANIC CLAYS UF
;	;	:	:	;	:	:	ì	:	: 42 PLASTICITY, FAT CLA
		:	:	1	:	:	:	:	: "
i		1	i	ì	•		•	i	14 CONT ORGANIC CLAYS OF HE
1	•	:	•	•	•	i	•	1	HIGH PLASTICITY, OR
	1	•							2
			-	- -	1	;	1	1	\$ 44 / SILTS
		:	. .	1	:	1	:	1	SILTS FEAT AND OTHER HIGH

Project Name: 68R-I

Project Location: KWAJALEIN ISLAND Depth to Water (ft): NOT MEASURED

Drill Company: FAR EAST DISTRICT

Orill Rig: CME-55 Inspector: OKADA

Casing Depth (ft): MA Core Recovery (%): MA Project Musber: KM0190 Boring Musber: 8-1 Project Mane: 68R-I

Project Location: KWAJALEIN ISLAND

Top of Hole (elev): 8.5' MSL

Morth: 3,165,699 East: 1,694,278

Completion Bates 20 OCT 1989

	F	•	N :	Ha :	; PI :	;	3m	FINE :	SAND	COAU 1	: :	PHI
	•		> CR (1		(%)		(PCF)				(TSF)	
Visual Classification	t	<u> </u>		ŀ		:	:	 ;	- 1	- 1	; ;	
ICSP) 0-13.0" SAND, POORLY GRADE! SOME ZONES OF WELL GRADED I	1 2 3	}	19: : +83:	113	: :	: : ::	115	; ;	; ;	; ; ;	• : : :	:
COBBLES AND GRAVEL, MEDIUM DENSE TO DENSE,	5	!	41	!		! !	1	 			: ;	
TAN TO PINK, MOIST (FII (GRADING TO WET AT 7.0')	7	:	+12! 20!	23:	\ ;	;		;	; ;	:	; ; ; ;	;
	10	; ;	161 141	;		:	1					
	11 12	: :		;	;	:	1	1	;	! !	} ; ;	;
ISMI 13.0-19.0' SAMD, SILTY, VEI FINE BRAINED, WITH SRAVEL, GRADING TO GRAY, NET	13 14 15	1	17:	; 1 1	1	!	1		; ; 1	; ; !	 	
	16 17 18	1	! :	1	:	! !	:	:	; ;	:	;	;
ISM) 19.0-29.0 SAND, WELL GRADI SOME BRAVEL AND SILT,	19 20 20	1	2 9 ;	; ;	:	: : :		 		1		
MEDIUM DENSE, TAN TO MHITE.	21	; ;	:	:	:	:	: :	\ :	1	!		;
	24 75		21			:		 				
	26 27 28	: 2	;	!	; ;	1		;	!	1		;
ISHY 27.0-60.5' SAND, SILTY, WITH GRAVEL, DENSE TO HED!!		: 2			<u>;</u>	<u>.</u>	1	 		· 		!
DENSE, TAN TO UNITE, WET	31 32 33	: 3	; ;	:	1	:	; ; ;	;	; ;	:	! !	;
	34 35	1		:	1	<u>.</u>		 		i		
	3& 37 38			:	1	:		:	1	;		
	39 40	: 3				<u>:</u>						! !
	41 42	•		1				;	:	:		1

Project Name: 688-I

Project Location: KWAJALEIM ISLAND Depth to Water (ft): NOT MEASURED

Drill Company: FAR EAST DISTRICT Drill Rig: CME-SS Inspector: OKADA

Casing Depth (ft): NA Core Recovery (I): NA

Project Mumber: KW0190 Boring Number: 8-1 Project Name: 68R-1

Project Location: KWAJALEIN ISLAND

Top of Hole (elev): 8.5' MSL North: 3,165,699

East: 1,694,278 Completion Date: 20 OCT 1989

PHI : egrees:	C (TSF)	6RAV (! FINE (%)		(PCF)	PI : (Z) :	; Wn : (I) :	N : ori > CR <:	F ■ . • t	Visual Classification
1					: :	;	:	22	43 44 45	SAND, SILTY, WITH GRAVEL, DENSE TO MEDIUM DENSE, TAN TO MHITE, MET
;	:				: :	;	;	:	46 47 48	
: 1				<u></u>	<u> </u>		; ;	20;	49 50 51 52	
						1	:		53 54 55	(GRADING TO MORE GRAVELS
:	;				: :	:	;	:	58 57 58	AT 55.0')
<u> </u>					: : !:		: 	20:	59 60	

Project Name: 58R-X

Project Location: KWAJALEIN ISLAND

Depth to Water (ft): 9.0

Drill Company: FAR EAST DISTRICT

Grill Rig: CME-55 Inspector: OKADA Casing Depth (ft): NA Core Recovery (1): NA

Project Number: KW0190 Boring Number: 8-2 Project Name: 6BR-Y

Project Location: KNAJALEIN ISLAND

Top of Hale (elev): 8.5' MSL

North: 3,165,690 East: 1,694,282

Completion Date: 24 OCT 1989

1 5: 90: 5: 2.821: 94: 1 91 +28: 1 15P7 0-14.0' SAND, POORLY GRADE 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	PHI :	C 1 (TSF)	(2)	(2)	FINE : (7) :	6s :	(PCE)	P1 (Z)	i iin : ; (%) ;	N : or: > CR <:	F e e t Visual Classification
23						2 921					
231 70; 7: 2.748; 102; 11: #33; 3 SILTY SAMPS. SCATTERD COBRES, NEDIUM DENSE, TAN 10: #13; 4 COBRES, NEDIUM DENSE, TAN 10: #13; 4 COBRES, NEDIUM DENSE, TAN 10: #14; 75; 41; 75; 42; 77; 78; 79; 79; 79; 79; 79; 79; 79; 79; 79; 79	1	:				2.021				*2 0 1	
	:	i		-	7:	2.748	1021			+33!	
0 89 5 12 97 6 6 90 4 2.788 93 21 72 7 6 6 90 4 2.788 93 21 72 7 7 7 7 7 7 7 7	:	}	21;	75:	41	:	:		10:	#131	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6: 90: 4: 2.788: 93: 21: 428: 7 1: 94: 3: 424: 9 9		:					<u> </u>				5 PINK, HOIST (FI
1 96 3 224 3 9 9 94 7 2,804 18 10 11 12 13 14 201 32 48 18 15 15 27 27 27 27 27 27 27 2	:		-		-						ADAMANA NA UPO AT 3 AN
1 96 3: 424 9 9 9 9 9 9 10 10 10 11 12 12 13 14 15 15 14 15 15 16 16 17 17 18 16 17 18 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	:	:				2.788	93:				7 ESCRIPTION (GRADING TO MET AT 7.0")
9: 84: 7: 2,804: 18: 10 112 123 134 144 20: 32: 48: 15 16	- :						i i		•	-	
11 12 13 13 14 15 15 16 17 17 17 18 17 18 17 18 17 18 17 18 19 19 19 19 19 19 19		•				2 804			•		
12 13 14						6,007	•		: :	<u></u>	
20: 32: 48: 14: 15 20: 32: 48: 16: 15 10: 17 10: 17 10: 18 11: 17 10: 18 11: 18 12: 19: 20: 34: 34: 32: 48: 37 12: 18: 19: 20: 34: 32: 48: 37 18: 18: 18: 18: 38: 38: 38: 38: 38: 38: 38: 38: 38: 3		;	:	i						•	12
20: 32: 49: 14: 15 VERY FINE GRAINED, W/ GRAY REDIUM DEWSE, GRADING TO GRAY, WET 16 17 18 19 19: 20 W/ GRAVEL, SOME SILT, MEDIUM DEWSE, TAM TO WHITE WET 21 72: 7: 7.795: 20: 25 24 27 27 27 27 27 27 28 29 29 29 27 28 29 29 27 28 29 29 27 28 29 27 28 29 27 28 29 29 27 28 29 29 29 29 29 20 20 20	:	;	;	:	1	;	1		: :	;	
16	;	;	;	:	1	;	1		: :	;	
17 6RAY, NET 18 19 19 19 19 19 19 19	<u> </u>	:	201	32:	481		1		1 :		
18 19 19.0-29.0' SAND, WELL GRA 23 69; 9; 19:20	;	:	;	1	1	;	:		: :	;	
19	:	;	:	i	;		:		: :		to to to to to
23	:	;	:	1						:	
21	•	:		(8)		1			i i	; (6)	THE TARGET TO THE STATE OF THE
22 NET 23 24 24 25 26 21: 72: 7: 7.785: 20: 75 22 26 23 24 27 28 28 29 29 29 20: 25 28 29 29 20: 27 28 29 29 20: 27 28 29 29 20: 27 20: 28 29 27 20: 28 28 29 29 20: 28 29 20: 28 29 20: 28 29 20: 28 20: 28 20: 28 20: 28 20: 28 21: 29: 29: 29: 29: 29: 29: 29: 29: 29: 29							<u> </u>		!	176	
23 24 24 25 26 25 26 26 27 27 27 27 27 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	;	:	•		;					1	
21: 72: 7: 7.785: 20: 25 24 27 28 29 45: 39: 16: 9: 30 31 GRAVELS, LOUSE OF MORE GRAVELS, LOUSE TO HEDIUM DENSE, TAM TO WHITE, MET 33 34 37 38 39 41 31 32 34 37 38 39 41	:	:		:	i					•	
26 27 28 29 29 (SM) 29.0-57.0' SAND, SILTY, 29.1 30 (SM) 29.0-57.0' SAND, SILTY, 29.0-57.0' SAND, SILTY, 29.0-57.0' SAND, SILTY, 20.00 31 (SM) 29.00	i			. :					: :	:	
27 28 29 45: 39: 16: 9: 30 31 GRAVEL, 20MES OF MORE 32 GRAVELS, LOOSE TO MEDIUM 32 DENSE, TAN TO WHITE, MET 33 34 34 37 38 39 39 26: 56: 18: 13: 40 41			21:	_72:	7;	2.785	<u>. </u>		:!	20:	75
28 29 [SM] 29.0-57.0' SAND, SILTY, 45: 39 16 9: 30 W/ GRAVEL, ZOMES OF MORE 31 GRAVELS, LODSE TO MEDIUM 32 DENSE, TAN TO WHITE, MET 33 34 34 35 37 38 39 39 39 39 41	1			:			;		1 1	!	
29 [SR] 29.0-57.0' SAND, SILTY, 45: 39: 16: 9: 30 W/ GRAVEL, ZOMES OF MORE GRAVELS, LOOSE TO MEDIUM 32 DENSE, TAN TO WHITE, MET 33 34 37 38 39 26: 56: 18: 13: 40 41	:	:	;	:	:		; ;		: !	;	[• • • • • • • • • • • • • • • • • • •
45: 39: 16: 9: 30 M/ GRAVEL, ZOMES OF MORE 31 GRAVELS, LODSE TO HEDIUM 32 DENSE, TAM TO WHITE, MET 33 34 34 35 37 38 39 26: 56: 18: 13: 40 41	;	:	:	: ;	;		; ;		1	1	
31 GRAVELS, LOOSE TO MEDIUM 32 DENSE, TAM TO WHITE, MET 33 34 34 34 34 34 35 37 37 38 39 39 39 41 41	:	;		1	:						29 [[] [SN] 29.0-57.0' SAND, SILTY,
32 DENSE, TAN TO WHITE, MET 33 34 34 35 35 35 36 37 38 39 26 56 18 13 40	<u> </u>						!		}	-	
78; 43; 19; 12; 35; 34 35; 36; 37; 38; 39; 39; 40; 41; 41;					;		; ;				
78; 43; 19; 12; 35 34 37 38 39 26; 56; 18; 13; 40 41	•			i i	i		, i				
78 43; 19 12; 35 34 37 37 38 39 39 40 41 41	:						, !!!		:	:	7.15.15.1
26 56 19 13 40	}		. 39:	43:	191		· ;		;	121	The Particular Control
26 56 19 13J 40 41 41	1						; ;		: 1		for the first
26 56 18 13 40 41	;		: :	;	;		: ;		; ;	:	* P.15-15-15-1
261 56 19 133 40 41 41 A1	;		: :	: :	:		: :		: :	:	(· 1 · · 1 · · 1 · · 1 · · 1 · · · 1 ·
	;		;	;	;		: :		:	:	Telepholis
CAR TO Let					191				!		T R Ported
	1				:		: !			· · · · · ·	1.4: 4: 1.4

Project Name: SBR-X

Project Location: KWAJALEIN ISLAND

Septh to Water (ft): 9.0

Orill Company: FAR EAST DISTRICT

Drill Rig: CME-55 Inspector: OKADA

Casing Septh (ft): NA Core Recovery (I): NA

g: CME-55 r: GKADA

Project Number: KM0190
Boring Number: 8-2
Project Name: 6BR-I
Project Location: KMAJALEIN ISLAND
Top of Hole (elev): 8.5' MSL
North: 3,165,690
East: 1,694,282

Completion Date: 24 OCT 1989

PHI : egrees:	C (TSF)	6RAV :			6s (PC	PI F): (I)		N	F e e t	Visual Classification
∮ :		; 14;	671	19!	2.854;			22	43 44 45 46	
:		26	57:	17	:	 	:	25;	47 48 49 50	(GRADINS TO MORE GRAVEL AT 50.0')
- 1		1 1	1	- 1/-	:				51 52 53	
<u>;</u>		; ;		<u> </u>			<u>:</u>		54 55 54 57	4(6W) 57.0-60.5' ERAVEL, SANDY,
; ;		66	27:	; ;	; ;		;	15:	58 59 60	MEDIUM DENSE, TAM, WET

Project Mase: 68R-1

Project Location: KWAJALEIN ISLAND

Depth to Water (ft): 8.0

Drill Company: FAR EAST DISTRICT Drill Rig: CME-55 Inspector: CKADA

Casing Depth (ft): NA

Core Recovery (X): NA

Project Number: (NO190

Boring Mumber: 8-3 Project Name: 6BR-1

Project Location: KWAJALEIN ISLAND

Top of Hote (elev): 9.5' MSL

North: 3,165,687 East: 1,694,284

Completion	Dates	26	OCT 198	9

PHI Segrees	C (TSF)	SRAV	SAND	FINE :	6 s	(PCF)	; ; (2) ;	iin (%)	: N ; or! > CR (F e e t Visual Classification
							;		20: : 24: : 14: : 3:	(SP) 0-14.0' SAMB, POORLY GRADE ZUNES OF WELL GRADED AND SILTY SANDS, SCATTERED CORBLES AND GRAVEL, MEDIUM EMSE, TAM TO PINK, MOIST (LOOSE AT 5.0') GRADING TO WET AT 7.0')
									15	F 8 (FI 9 10 11 12 13 14 0-19.0° SAND, SILTY,
										15 VERY FINE GRAINED, 16 MITH BRAVEL, MEDIUM DENSE, 17 SRADING TO GRAY, WET 18
									17	20 #ITH GRAVEL, SOME SILT, 21 MEDIUM DENSE, TAM TO WHITE 22 #ET 23 24 25 26 26 27 26 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20
								· · · · · · · · · · · · · · · · · · ·	21)	27 28 29 29 30 31 31 32 32 46 33 34 34
							,		111	35 34 37 38 39 40 41 42

Project Name: 688-X

Project Location: #WAJALEIN ISLAND

Cepth to Mater (ft): 9.0

Orill Company: FAR EAST DISTRICT Orill Rig: CME-55 Inspector: OKADA

Core Recovery (1): NA

Casing Depth (ft): NA

Project Number: (M0190

Boring Number: 8-3 Project Name: 69R-1

Project Location: KWAJALEIN ISLAND

Top of Hole (elev): 8.5' MSL

North: 3,165,687 East: 1,674,284

Completion Date: 26 OCT 1989

PHI (C (TSF)	GRAV (I)		65	(PCE)) : P1 ! (7	1	U n (2)	n : or: CR (1	F @ • t	Visual Classification
									 27)	43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 57 58	(GRADING TO GRAVEL, SANDY, WITH SILT)

APPENDIX B PLATE BEARING TEST

FROM (Name)		OFFICE SYMBOL	TELEPHOI	NE NO.	BEL CARE	SHONATURE	4
G. MASA	au.	CEPOD-ED-GS	(808) 4	38-8875/19			F,FM4S BR,POD
70 (N-0)		OFFICE SYMBOL	TELEPHON	E NO.		PRECEDENCE	
DON YUL	E	CEWES	(601)	34-2235	8	ROUTINE	18Dec89
SUBJECT		₹u,	L. Government Prin	time Offices 1986—62	3-110	·	
					,		
	; ;		*				
1)		 		- 	
		U.S. ARMY_E	NGINEER (DIVISION, PAG	SIFIC JE	AN	
				ENGINEERS		!	
- pi	POJECT TITE	E BBR-X	<u> </u>		SH NO	/. _OF	3 SHS
L	CATION A	DJI TO DECES.	KWAJAL	AIN ISL	<u> </u>	CTION	<u> </u>
	RAWING (S)	(0. <u> </u>					
ci	MPUTED BY	070	ATE 11/14.	CHECKED B	y <u> </u>	- OA	75/7/18794
				ANALYSIS	!		
		·	DESIGN	AUNTOIS			
		OFATI O	ATE 02			المستنب المستنب	:
		STATIC PL	44	FALIDO.	ا جرب ا	NOFE	700)
		DIAL RE				104E	-
LOAD	LOAT		كضدائض	CIN CIN	flect	جهر رضا	
(KG)	(PSI		#3		· •	#3	AYG
CAG				·	→ <u>~</u> ~	· · · · · · · · · · · · · · · · · · ·	
400	1.2.	. 0088 .00	A .005	31 -	ZERO	READING	
	// 🐷			7'		_	
1600	5.0		91 ,010	0 0	99 00	73 .0049	0070
				1 -			1
3200	100	0324 014	2 02	44 .02	0/	24 0193	0184
4800	. 15.0	04/3 .03	3603	45 .03	23.03	18 .0294	03/5
				.			
6400	20.0	0485 .04	<u>14,04</u>	59 .039	7 04	26 b408_	04/0
				 			
8000	25,0	0516 .04	39_ , as	92 048	28 ,04	7/ 045/	0450
9600	29.9	0605 .05	70.,00	:p7 .os/	7 ,05	52.0556	
			···				
11, ZQQ	_3 _2 ,_7_	0678.00	45	P5-05	101,00	11.0638	0618
		-			· • • • •	·	
1					1		
	· ·		·· · · · ·	· · · ·			
	. را ا	= 340 pc					• • • • • • •
				 			
			• • • •		1		
			<u>. </u>				
				!		TD 621A	
				~L		D 104	I

MIL-STD-621A

Figure 104-8. Correction of Wa for bending of the plate.

SHT 3 OF 3 STATIC PLATE BEARING GER-X ADJ TO DICES RWAJALEIN ISL

Method 104

NOV 89

30f8

A 741013hr 71411				pile		
UNIT WEIGHT D "YOUNE OF HE	ETERMINATIO	N		25	oct -	1989
	231 5118		. ~ ~	SAMPLE	****	
GBR - X	BBARIN	JT TO PL	SITE			
ADDITIONAL SPECIFICATIONS						
CONVERSION PACTORS						
1 is. = 2.64 cm.		62.4 1b./cs. ft.	= Unit w	eight of	VELOP	
1 1b. = 462,6 gm.	1 cm (t. =)	1728 cm. im. Standard maters				
CALIBRATION OF STANDARD MATERIAL		STANDARD BATERS	C OIL		THER (Spac	117)
		UNITS				
APPARATUS OR TARE NUMBER						_
1. WEIGHT OF APPARATUS OR TARE FILLED						
2. WEIGHT OF APPARATUS OR TARE EMPTY						
3. WEIGHT OF MATERIAL (22.)						
4. VOLUME OF APPARATUS OR TARE						•
5. UNIT WEIGHT OF MATERIAL (2.)						
4. AVERAGE UNIT WEIGHT OF MATERIAL		10.160. 174				
CALIBRATION OF APPAI	RATUS		A		CONE NUM	
		UNITS				
7. INITIAL WEIGHT OF APPARATUS + SAND		LBS				
8. FINAL WEIGHT OF APPARATUS + SAND	V0L *	.0408 FT	319	3 PCF	-	
9. WEIGHT OF SAND IN TEMPLATE AND/OR COME		LBS	3.19	3.79		
	"YOLUNE OF	10LE*				
		UNITS				
10. INITIAL WEIGHT OF APPARATUS + MATERIAL		LBS	15.42	16.43		
11. FINAL VEIGHT OF APPARATUS . MATERIAL		LBS	8.69	9.29		
17. WEIGHT OF MATERIAL RELEASED (1011.)		UB5	6.73	7.14		
1). (For all, some so 12. For cond. 129.)		LBS	2.94	3.35		
18. VOLUME OF HOLE (17.)		FTS	.0316	.0360		

DD: FORM ,, 1215

4078

- . . . DED 18 188 08:05 0840E.FDD.FUHREDERER.H WATER CONTEST OFTERMINATION UNITS (CONTROL OF CONTROL OF CONT TARE NUMBER 88 | 55 15. WEIGHT WET TOIL & TAPE 317.5 304.3 16. WEIGHT CRY SOIL & TARE 296.7 280.9 SMS 17. WEIGHT WATER (15.-16.) 6MS 20.8 23.4 18. WEIGHT TARE 65.2 66.1 GMS 19. WEIGHT DRY SOIL (18.-18.) 231.5 214.8 GMS 20. WATER CONTENT (17 # 100) 9.0 10.9 % 21. AVERAGE WATER CONTENT PERCENT WHIT WEIGHT DETERMINATION UNITS CONTROL OF THE PROPERTY TARE NUMBER RW-2 C 22. WEIGHT WET SOIL & TARE LBS 4.64 4.97 23. WEIGHT TARE 0.71 LBS 0.71 24. WEIGHT WET SOIL (22.-23.) LBS 4.24 3.93 25. WET UNIT WEIGHT (24./24.) LB./CU. FT. 124.4 118.3 26. ORY UNIT WEIGHT (25. = 100 -21.) LB./CV. FT. 114.1 106.7 TESTS TAKEN 12" BELOW EXIST'G GRADE (APPROX EVEN 7' MSL). 0.0" ____ GROUND SURFACE GRAY/TON SONO (COMPACTED) 4.0" (4) TAN SAND (FILL) 12.0° WITH CORAL GRAVEL & OCCASSIONAL CORRES (SP)

U. S. GONGERHERIT PRESTURE OFFICE: 1967 @-443095

COMPUTED ST (SIgnature)

TECHNICIAN (SIGNATURE)

010

518

CHECKED BY (Signature)

				ARM	Y ENGINEE	R DIVISIO	V. PACIF	IC OLEAN -		
		<u></u>			CORPS	OF ENGIN	EERS			
	000	T TITLE	- ABI	R-X				SH NO. 2	OF	5#5
	PHOJEC	W 24/27	TO 7	DCCB	KWA	JACEIN	-/SC	SECTION_		
	DRAWIN							3201101		==
	COMPLIT	ED BY_	010	= ===	- DATE ///	/5 CHEC		- In	DATE	25/87
	- Comro									===
					DESIG	N ANAL	1515			
 -			6416	111 47	TE A	IG RE	POIL	70		
			OVER	2 /	AST	FIVE	CY	CLES		
			.0 7		(2			•	
2461			40		UNLOA	0		REBOUND	(12)	
- J. C	·									
11		0/9	1/9_		0188	2		00030		
<u>-</u>		Til.								
12		,010	340		0189	7		00043		·
13		. 0/	930		0192	7	·	00003		
					0/873	*		00.060	_*	
14		.01	923		0,02	-		00110		
								:		
15_		-01	937		,0190	7		00000		
-			<u>:</u>		_					<u> </u>
	:								90	つろろ
¥ /	OPOCITI	M M	N25 4	100m	GRAPL	A	16 R	ERBUND		40
× e	ORRECT	<u>M_M</u>	VOE _	Rom	GRAPI	A	6 R	EBBUND		40
<u>* </u>	ORRECT	<u>M_M</u>	· 25	r Pon	GRAPI	A	6 R	EBOUND		4C.
			· i		<u> </u>			EBWND		4€
			· i		47, I			EBWND		4C.
	by.	EC //	10-3	45-	147, 1	Jucy		EBOUND .		+0
	by.	EC //	10-3	45-	147, 1				000	
	by.	EC //	10-3	45-	/47, 1	Jucy		EBOUND where	000	
	by.	EC //	10-3	45-	147, 1	Jucy			000	
	3 M	EC //	/0-3 25.	5 -	147, 1	Jucy		where	000	
	3 M	EC //	/0-3 25.	5 -	147, 1	Jucy	1966	where,	μ = 0. PSF	3
	3 M	EC //	/0-3 25.	5 -	147, 1	Jucy	1966	where	μ = 0. PSF	3
	3 M	EC //	/0-3 25.	5 -	147, 11 5 (Jucy	1966) 	where,	μ = 0. PSF	3
	3 M	EC //	25.	5 -	147, 11 5 (Jucy	1966) 	where,	μ = 0. PSF	3
	3 M	EC //	/0-3 25.	.2	147, 11 5 (Al 5	Jucy	19.66) Al	where,	μ = 0. PSF	3
	b M	EC //	25. 25.	5 -	147, 11 5 (Al 5 20)	July 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1966) 	where,	μ = 0. PSF	3
	b M	EC //	25. 25.	5 -	(47, 1) \(\delta \) \(\delta	July 1-ju	1966) 	where,	μ = 0. PSF	3
	b M	EC //	25.	5 -	147, 11 5 (Al 5 20)	July 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1966) 	where,	μ = 0. PSF	3
	b M	EC //	25. 25.	5 -	AL S 20)	July 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1966) Al 5=	- 720 .00033 NCORREC	= .000	3
	b M	EC //	25. 25.	.2(7	AL 5 (20)	July 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1966) Al 5=	where,	= .000	3
	b M	EC //	25. 25. 23.2	.2(7	AL S 20)	July 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1966) Al 5=	- 720 .00033 NCORREC	= .000	3
	b M	EC //	25. 25. 23.2	.2(7	AL S 20)	July 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1966) Al 5=	- 720 .00033 NCORREC	= .000	3 Joouth
	b M	EC //	25. 25. 23.2	.2(7	AL S 20)	July 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1966) Al 5=	- 720 .00033 NCORREC	= .000	3
	b M	EC //	25. 25. 23.2	.2(7	AL S 20)	July 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1966) Al 5=	- 720 .00033 NCORREC	= .000	3 Joout
	b M	EC //	25. 25. 23.2	.2(7	AL S 20)	July 1 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1966) Al 5=	- 720 .00033 NCORREC	= .000	3 Joout

